人事决策

人事决策(Personnel Decisions)

目录

  • 1 什么是人事决策
  • 2 人事决策的基本步骤
  • 3 人事决策的方法

什么是人事决策

  广义的人事决策是指有关人力资源开发与管理各方面的决策,主要包括:岗位定员决策、岗位定额决策、 工资报酬决策、职务分类决策、员工培养决策、 劳动保护决策、人事任免决策等。

  狭义的人事决策就是指人事任免决策,也即决定让什么人从事哪一项工作。

人事决策的基本步骤

人事决策的方法

  根据收集信息和整合信息方式的不同,可划分八种人事决策方法:

  1、完全判断法

  收集信息时,采用的是主观判断的方式,而在做人事决策时,也是用主观判断的方式。临床法主要靠的是评价者的经验,易受人的主观因素的影响,但却是许多企业实际在用的人事决策方法,一是因为这个方法简单易行,二是因为对其它方法缺乏认识和了解,也找不到合适的方法。

  2、量化评估法

  在收集信息时用主观判断的方式,而在做决策时采用了量化统计的方法,这就是主客观结合的量化评估法。举例来说,企业里做干部选拔时,由几位评委面试被评价者,按照几个评价要素对被评价者进行评分,然后把评分的结果进行统计处理,分数高者予以录用。这种方法在收集信息时用了面试这种主观判断的方法,而在决策时用了量化统计的方法。

  这种方法在人才测评中用得较多,但由于缺少专业训练和经验,用得不科学,使打分的结果与实际情况差异很大。

  3、因素解释法

  在收集信息时用量化方式,在决策时根据收集到的量化信息进行主观判断,然后做出决策.比如,为了了解被评价者的个性特征,我们会使用一些信度和效度比较好的心理测验工具,收集被测者个性特征方面的信息。被测评者答完问卷后,统计出被测评者在问卷中每一项测评维度上的得分,就可以用来判断被测评者的个性方面的特征。有的被测评者在权力动机这个维度上得分较高,亲和动机得分中等偏低,决策者因此判断候选人比较适合从事团队领导者的角色。这里不是按照简单的分数统计,以一个分数线来决策的,而是决策者根据各测评维度的分数,结合自己的经验而进行的主观判断。

  4、完全统计法

  收集信息和做人事决策时,均使用了量化的方法。这种方法在面对较大量的候选人时,采用笔试筛选的方式,进行人事决策。比如,一个企业准备选拔30名后备干部,而报名的有150人,这个时候为了提高工作效率,就可以使用管理能力测试,作为一个筛选,经考试答题,得分排在前50名的人,可以直接录用,或者进入下一轮测试选拔程序。

  5、判断合成法

  在收集人事信息时,既有主观判断的方式,也有统计计分的方式,而在决策的时候,对上述收集到的量化信息和主观印象进行总体判断,决定候选人是不是能够胜任。很多企业里在选拔人才时使用了较为多样性的方法,包括面试、笔试,面试属于主观判断收集信息,而笔试则多是通过量化计分收集信息。最后决策时,是决策者通过审阅被测评者的考试得分和自己面试时的印象来作出决定,这就是用的判断合成的方法。

  这种方式尽管使用了较多样的收集信息的手段,但是在根本上还是靠人的主观判断,缺少一个量化的模型,因此很难克服人的主观性对决策结果的影响。

  6、统计合成法

  为了尽量避免因主观评价造成的偏差,在实际的人事测评中,我们要求尽量做到量化,引入了统计分析的方法。目前人才评价方法中最准确的方法要数评价中心技术了,这种技术在收集人事信息时既有主观判断的方式,如面试、情景模拟,也有量化统计的方式,如笔试测验,文件筐测验,尽管收集信息的方式不同,最终都要对收集的人事信息进行编码、计分,最终通过一个量化的决策模型统计出结果。

  7、判断综合法

  统计合成法所提供的人事决策结果是完全量化的,按照一定的总体得分,有一个排序,比如第一名、第二名、第三名。但有时并不能完全依照名次去录取。当在真正做人事决策的时候,会考虑到测评之外的其他因素而决策是否真正去录用。比方说选拔一个企业一把手岗位人选时,其中一个人按照胜任能力在所有的被测评者中排在第一名,但是就是因为他只吃素食,在饮食方面不太适合去与方方面面的人员进行应酬,而这项工作又是作为地方的一把手非常重要的工作,所以也无法任用,只好用了第二名。这是属于在既定结果的基础上,又考虑到其他因素的影响来进行人事决策的情况。

  8、统计综合法

  在既定结果的基础上,又考虑到其他因素决策时,有时仍然可以用量化的方式,比如说还要考虑年龄因素时,就可以把年龄作为一个因素考虑到资格条件里面,按照岗位的要求进行计分。

  作为专业的、科学的人事决策,做到人事决策信息的量化是非常重要的一个方面。但现实当中,决策者往往看见数字就头疼,即使偶尔的使用,也觉得数字化的评估结果,并没有比主观判断更准确,因而对把测评结果数字化并不怎么感兴趣,持一种怀疑的态度。从科学性上来讲,量化方法总比不量化的好。

阅读数:633