转移概率(transition probability)
目录
|
转移概率是马尔可夫链中的重要概念,若马氏链分为m个状态组成,历史资料转化为由这m个状态所组成的序列。从任意一个状态出发,经过任意一次转移,必然出现状态1、2、……,m中的一个,这种状态之间的转移称为转移概率。
当样本中状态m可能发生转移的总次数为i,而由状态m到未来任一时刻转为状态ai的次数时,则在m+n时刻转移到未来任一时刻状态aj的转移概率为:
这些转移移概率可以排成一个的转移概率矩阵:P(m,m+n)(Pij(m,m + n))
当m=1时为一阶转概率矩阵,时为高阶概率转移矩阵,有了概率转移矩阵,就得到了状态之间经一步和多步转移的规律,这些规律就是贷款状态间演变规律的表,当初始状态已知时,可以查表做出不同时期的预测。
假定某大学有1万学生,每人每月用1支牙膏,并且只使用“中华”牙膏与“黑妹”牙膏两者之一。 根据本月(12月)调查,有3000人使用黑妹牙膏,7000人使用中华牙膏。 又据调查,使用黑妹牙膏的3000人中, 有60%的人下月将继续使用黑妹牙膏, 40%的人将改用中华牙膏; 使用中华牙膏的7000人中, 有70%的人下月将继续使用中华牙膏, 30%的人将改用黑妹牙膏。据此,可以得到如表-1所示的统计表。
表-1 两种牙膏之间的转移概率
拟用 | 黑妹牙膏 | 中华牙膏 |
---|---|---|
现用 | ||
黑妹牙膏 | 60% | 40% |
中华牙膏 | 30% | 70% |
上表中的4个概率就称为状态的转移概率,而这四个转移概率组成的矩阵
称为转移概率矩阵。可以看出, 转移概率矩阵的一个特点是其各行元素之和为1。 在本例中,其经济意义是:现在使用某种牙膏的人中,将来使用各种品牌牙膏的人数百分比之和为1。
2. 用转移概率矩阵预测市场占有率的变化
有了转移概率矩阵,就可以预测,到下个月(1月份)使用黑妹牙膏和中华牙膏的人数,计算过程如下:
即:1月份使用黑妹牙膏的人数将为3900,而使用中华牙膏的人数将为6100。
假定转移概率矩阵不变,还可以继续预测到2月份的情况为:
这里称为二步转移矩阵,也即由12月份的情况通过2步转移到2月份的情况。二步转移概率矩阵正好是一步转移概率矩阵的平方。一般地, k步转移概率矩阵
正好是一步转移概率矩阵的k次方。可以证明,k步转移概率矩阵中,各行元素之和也都为1。